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A B S T R A C T   

Maternal alloantibody-mediated hemolytic disease of the fetus and newborn (HDFN) ranges from no or mild 
symptoms to severe hydrops and intrauterine fetal demise. Hemolytic anti-D-mediated HDFN proceeds via a long- 
known mechanism, to which three other pathways to fetal/neonatal anemia may be added: (0) Fetal erythrocyte 
destruction can proceed by extravascular phagocytosis. (1) An apoptotic pathway has been described for anti- 
Kell, and anti-Ge3. (2) Erythropoietic suppression may arise from altered or deformed erythroblast architec-
ture in anti-M-mediated disease. (3) Clonal escape from erythropoietic suppression is hypothesized to arise from 
maternal anti-Jra immune pressure, albeit this requires further elucidation. Alloantibody-mediated anemic dis-
ease of the fetus and newborn (ADFN) is a designation we favor for cases when hemolysis or hyperbilirubinemia 
are not the dominant features, such as those provoked by anti-Kell, anti-Ge3, anti-M, and anti-Jra.   

1. Introduction 

Blood group incompatible hemolytic disease of the fetus and 
newborn (HDFN) is a condition in which maternal antibodies shortened 
the lifespan of red cells with cognate paternal alloantigens. During 
pregnancy, maternal IgG antibodies are actively transported across the 
placenta after binding to neonatal Fc receptors (FcRn) [1], with a ten-
dency toward more IgG as gestation approaches term. This process 
correlates with maternal IgG concentration irrespective of potential 
harm to the fetus, as may arise when such antibodies encounter cognate 
alloantigens. 

It has been long known that small numbers of fetal red cells 
commonly enter the maternal circulation; more recent investigations 
demonstrate that substantial concentrations of nucleic acids and mi-
croparticles from the fetus, and fetal (placental) tissue cross the 
placental barrier during normal pregnancy, more so during and just after 
delivery [2,3]. 

2. Classic pathway of fetal red cell destruction, mediated by 
maternal antibody: extravascular hemolysis 

For typical RhD-HDFN, fetal red blood cells, sensitized by maternal 
anti-D and partially activated complement C3b, can be recognized, 
trapped, phagocytosed and destroyed by the mononuclear phagocytic 
system of the fetus/neonate itself, specifically by extravascular hemo-
lytic processes of Fcγ receptor and complement C3b receptor-dependent 
pathways. Severely affected neonates show hemolysis, anemia, and 
icterus with elevated indirect bilirubin. Significant anemia induces 
compensatory fetal erythropoiesis characterized by increased re-
ticulocytes and sometimes erythroblasts in the peripheral blood of the 
fetus/neonate [4]. Intrauterine transfusion diminishes the stimulus for 
the compensatory red cell production that is characterized by elevated 
fetal reticulocyte counts. Suppressed erythropoiesis may persist, pro-
longing postnatal anemia, which, in turn, may require additional red cell 
transfusion (Figure 1). 
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3. Alternative pathway of maternal alloantibody-mediated 
anemic disease of the fetus and newborn: suppression of 
erythropoiesis via apoptosis or other mechanisms 

Different from the classic pathway associated with anti-D, herein we 
discuss mechanisms of developing fetal/neonatal anemia other than 
extravascular red cell destruction. Anti-Ge3, anti-Kell, and anti-M are 
associated with direct mechanisms involving apoptotic or erythropoietic 
suppression; for anti-Jra we hypothesize a third mechanism with or 
without clonal escape. 

3.1. apoptotic pathway of erythroid progenitor cell death 

3.1.1. Anti-Kell-mediated anemic disease of the fetus and newborn (ADFN) 
(Fig. 2) 

The Kell glycoprotein (CD238) containing 732 amino-acids expresses 
at least 35 recognized blood group antigens. The single amino-acid of 
methionine replacing threonine at position 193 (Met193Thr) eliminates 
a N-glycosylation site of the Kell protein consisting the K (KEL1) and k 
(KEL2) epitope, respectively [5]. Expression of Kell glycoprotein on 

erythrocytes is not essential to their structure or function, however, Kx, 
which is covalently linked to Kell, is critical to normal morphology. 
Furthermore, Kell glycoprotein comprises part of a surface membrane 
complex with glycophorins C and D [6]. 

HDFN mortality dramatically declined during a 30-year-period in the 
Netherlands, as nationwide screening and intervention were systemati-
cally introduced. In a predominantly Caucasian population, incidence of 
maternal alloimmunization against D was followed by Kell, but hydrops 
from anti-Kell was still 3.5 times higher than from anti-D, and intra-
uterine transfusions begin about 3 weeks earlier in this well-organized 
Dutch health care system [7]. 

Early expression of Kell glycoprotein in committed progenitor cells 
(burst-forming unit erythroid and colony-forming unit erythroid) sug-
gests its critical role in early stages of erythropoiesis [8]. Maternal 
anti-Kell often results in the suppression of fetal erythropoiesis at the 
progenitor level, as evidenced by in vitro inhibition of Kell + erythroid 
burst-forming units (BFU-E) and colony-forming units (CFU-E) [9]. In-
fants affected by maternal anti-Kell characteristically have lower retic-
ulocyte counts corresponding to the severity of their anemia, along with 
lower bilirubin, but poor correlation between maternal antibody titer 
and the degree of anemia. Kell alloimmunization may lead to more se-
vere fetal anemia and hydrops, rather than hyperbilirubinemia, when 
compared with D-alloimmunization due to early erythroid cell destruc-
tion before erythroid cells accumulate significant hemoglobin levels [10, 
11]. Therefore, in anti-Kell-mediated incompatibility, ADFN might be a 
more appropriate designation than HDFN. 

Since Kell glycoprotein is a metalloendopeptidase that cleaves 
endothelin-3 to produce bioactive endothelin-3, anti-Kell was once 
posited to modulate peptide growth factors on the cell surface [9]. 
However, this has been disputed, because KEL1(K) red cells have similar 
endothelin-3-converting enzymatic activity as those with the common 
KEL2 (k) phenotype [12]. 

The McLeod syndrome (MLS) is a progressive multisystem, neuro-
degerative disease affecting older individuals with X-chromosomal 
inherited neuroacanthocytosis. MLS patients have red blood cell ab-
normalities including immune-hematologic, morphological (acantho-
cytosis) functional impairments, as well as abnormal blood group in Kell 
and XK blood group antigen expression, and formation of anti-public red 
cell alloantibodies [13]. The XK protein with 444 amino-acids is forming 

Fig. 1. Classic pathway of the pathogenesis of hemolytic disease of the fetus 
and newborn. 
Extravascular destruction of maternal alloantibody-sensitized red cells of the 
fetus by phagocytic cells of the fetus and newborn via the mononuclear 
phagocytic system. 

Fig. 2. Anti-Kell-mediated fetal erythroid suppression via progenitor cell apoptosis. 
Maternal alloantibody against Kell antigen expressed on Kell glycophorin, which is critical to normal morphology in the early stage of erythropoiesis, suppresses fetal 
erythropoiesis at the progenitor level possibly via an apoptotic pathogenesis. 
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a heterodimer with Kell glycoprotein. Individuals with MLS lack the Kx 
antigen may raise anti-public red cell antibodies and need very rare Kx 
negative RBCs for transfusion. On the other hand, red cells of simple K 
null (Ko), usually not morbus itself, and therefore not develop 
anti-public antibodies against Kx blood group. 

Although anti-Kell is involved in direct suppression via an apoptotic 
process or by inhibiting normal formation of the erythrocyte cytoskel-
eton, the classical pathway contributes to fetal anemia, as suggested by 
increased reticulocyte counts, 7.3 % or 133 × 109/L before intrauterine 
transfusion [4]. Furthermore, among 93 anti-Kell affected infants, the 
titer 4 was the cut-off point for diagnostic accuracy, however, 
antibody-dependent cellular cytotoxicity bioassay was not helpful in 
identifying high risk pregnancies [14]. This study also supports that a 
non-classic pathogenesis is involved and may predominate in the pro-
gression of anti-Kell mediated ADFN. 

3.1.2. Anti-Gerbich (Ge)-mediated ADFN (Fig. 3) 
The Ge blood group antigens are expressed on glycophorin C (GPC) 

and glycoprotein D (GPD); the former is expressed on very early 
erythroid progenitor cells, as shown in Table 1 [8,15]. GPC, in a ternary 
complex with protein 4 and p55, exists abundantly at 2.0 × 105 copies 
per cell, 90 % of which are integrated in the cytoskeleton and deemed 
essential for maintaining red cell shape and membrane functions [16]. 

Maternal alloantibody against the high incidence Ge3 antigen causes 
late-onset or postnatal ADFN characterized by lower-than-expected 
reticulocyte counts unresponsive to erythropoietin treatment [17,18]. 
From monocyte monolayer assays with showing high values of 51%– 
98%, anti-Ge3 was once presumed to promote phagocytosis of Ge+
erythroid progenitors by phagocytic cells [19]. Anti-GPC profoundly 
inhibits growth in an erythroid cell line (K562) and increases exofacial 
phosphatidylserine expression [20]. Moreover, poly-caspase inhibitor 
(Z-VAD-FMK) of classical apoptosis failed to reverse the suppressive 
effect of anti-GPC. For these reasons anti-Ge3 is now thought to suppress 
erythroid proliferation via a non-classical apoptotic mechanism [21]. 

3.2. suppression of erythropoiesis via agglutination or altered/deformed 
erythrocyte progenitor cells 

3.2.1. anti-M-mediated ADFN (Fig. 4) 
The MNS blood group system, with 49 antigens expressed on gly-

cophorin A (GPA) and glycophorin B (GPB), are expressed later than 
GPC and Kell glycoprotein (Table 1). Importantly enough, GPA is the 
most abundant sialoglycoprotein of the erythrocyte membrane, with 1 ×
106 per cell [22]. Its O-glycan, carrying most of the sialic acid, con-
tributes to the negative zeta potential of erythrocytes, which keeps 

erythrocytes from adhering to each other and to vascular endothelium 
[22]. 

Anti-M is usually a naturally occurring IgM antibody, with low titer 
by indirect anti-globulin test (IAT) at 37 ◦C with higher titer at room 
temperature, and are clinically insignificant in blood transfusion. Anti-M 
is the second most detected alloantibody (excluding anti-Lea and anti- 
P1) among pregnant women, at 9.1 % in Japan, below anti-E (with or 
without anti-c) at 26.9 %, and 14 % in Stockholm [23,24]. 

The fetuses of women with anti-M range from asymptomatic to 
severely hydropic with intrauterine or neonatal demise [24]. In general, 
anti-M of the IgM class rarely switches to IgG to induce severe fetal 
disease among Caucasians [25]. Non-Caucasians may have a different 
risk profile. Among Japanese, maternal anti-M of predominantly IgM 
class, with low levels of IgG class, which can cause severe morbidity 
characterized by lower-than-expected reticulocyte counts and late-onset 
postpartum anemia for which transfusion support may be required for 
30–60 days. However, hyperbilirubinemia is observed more frequently, 
compared to anti-Kell-mediated HDFN [26]. In a CFU-E assay, anti-M of 
2% maternal serum directly suppressed M-positive erythroid precursor 
cell proliferation by 63 % suppression against MM cells and by 0% 
against NN cells [27]. 

These observations in anti-M-mediated HDFN/ADFN suggest that 
two mechanisms may be involved, principally by suppression of eryth-
ropoiesis, possibly agglutination of progenitor cells via decreased sia-
loglycoprotein on GPA and/or GPA deformed by maternal anti-M, and 
partly by immune destruction as with anti-D. However, the contribution 
of an apoptotic pathway has not been excluded. 

4. Second alternative pathogenesis of maternal alloantibody- 
mediated ADFN: immune pressure with or without clonal escape 

4.1. Anti-Jra-mediated ADFN with/without clonal escape of erythroid cell 
lineages (Fig. 5) 

The JR blood group system has one antigen, Jra, with a high preva-
lence across different ethnic groups. Jr(a-) individuals are rare, but 
found largely in Asian populations [28]. Using a human monoclonal 
anti-Jra, 0.06 % (238 of 159,263 blood donors) were Jr(a-), with no 
significant difference between males and females. Among those identi-
fied as Jr(a-), anti-Jra was detected in 33.7 % of women (35 of 104), but 
in none of 134 non-transfused men [29]. In fact, anti-Jra is the fourth 
most frequently found clinically significant alloantibody after anti-E 
(with or without anti-c), anti-M, and anti-D among pregnant women 
in Japan [21], even though Jra antigen sites are approximately 1/30 the 
number of Rh-E [30]. In antibody screen, anti-Jra is detected more 
frequently among female than male patients, 1.2 % vs 0.2 %, p < 0.01 
[23]. The Jra antigen is carried by ABCG2 (ATP-binding cassette, family 
G, membrane 2), which is overexpressed on placental villi [31]. Jra may 
be a sensitizing antigen during placental development early in preg-
nancy, and a relative lack of anti-Jra in the fetal circulation suggests that 
anti-Jra might be absorbed by placental antigens. 

The severity of anti-Jra-disease ranges from no symptoms to severe 
anemia that needs intrauterine and exchange transfusion [32]. Of 39 
reported newborns, only 10 developed anemia (hemoglobin level <10 
g/dL). In contrast to anti-D-mediated HDFN, maternal anti-Jra titer did 
not correlate with the severity of anemia, level of bilirubin, or any in-
terventions required. The reticulocyte count did not increase, which 
suggest a lack of compensatory hematopoiesis. The total bilirubin levels 
were generally low. The direct antiglobulin test (DAT) was largely 
positive in mildly affected and conservatively treated neonates, whereas 
it was negative in half of anemic neonates. In the context of anti--
Jra-mediated disease of the fetus and newborn that uniformly lacks ev-
idence of hemolysis, we consider the term “HDFN” inaccurate, whereas 
alloantibody-mediated “ADFN” might be a more suitable designation. 
Because high titer anti-Jra serum (1024) from a woman delivered ADFN 
failed to demonstrate suppression of BFU-E and CFU-E, direct 

Table 1 
Order of cell-surface marker appearance on in vitro culture erythroid cord 
bloodCD34+ cells.  

Target Beginning Interim Reference 

CD34 day 0 (100 %) day 7− 9 
(disappearance) 

[8] 

Glycophorin C (GPC) day 0 (84 %) all through (100 %) [15] 

Kell glycoprotein 

day 0 (~20 %) 
(after  

[15] 

GPC and before 
RhAG)   
day 1− 2 day 7 (100 %) [8] 

Rh-associated 
glycoprotein (RhAG) 

not noted day 5− 7 (50%) [15] 
day 3− 4 day 9 (100 %) [8] 

Glycophorin A (GPA) not noted day 5− 8 (50%) [15] 
day 4− 5 day 9 (100 %) [8] 

Band 3 
not noted day 6− 11 (50%) [15] 
day 7− 9 day 13− 14 (100%) [8] 

RhD 
not noted day 7− 14 (50%) [15] 
day 10− 12 day 15 (100 %) [8] 

Rh CcEe not noted day 7− 14 (50%) [15] 
Rh Ce day 5− 7 day 13 (100 %) [8]  
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suppressive pathogenesis including apoptosis is unlikely [33]. 
In a case of anti-Jra-mediated ADFN, neonatal red cells were revealed 

to be Jr(a-), with only a fraction Jr(a+) after antibody-elution treatment 
at day 3 of life, becoming biphasic with Jr(a+) and Jr(a-) at 1 month, 
and totally Jr(a+) at 10 months [32]. This phenomenon, that recovery of 
Jr(a+) clones by 10 months of life, suggests that clonal escape from 
anti-Jra immune pressure was brought by epigenetic modification of 
nucleic acids (DNA and RNA). If this phenomenon of suppressed Jr(a+) 
cells in neonates born to anti-Jra mothers of high-titer is substantially 
universal, a plausible reason why many anti-Jra ADFN cases are less 
severe may be proposed. 

After allogeneic hematopoietic stem cell transplantation (allo-HST), 
relapse is still a major supervention. Current evidence shows that relapse 
is an adaptation of leukemic cell population to escape immune pressures 
such as altered expression of human leukocyte antigens (HLA), relevant 
metabolic changes, and production of anti-inflammatory cytokines [34, 
35]. In lung cancer, loss of HLA heterogeneity occurs in 40 % and is 

associated with a subclonal neoantigen burden, and immune escape 
mechanisms [36]. If one non-targeted allele and one targeted alleles 
exist at a particular locus, as might be seen in cancer susceptibility 
phenomena, loss of the targeted allele may stimulate non-targeted an-
tigen dominance. This immune-mediated pathophysiology is usually 
developed mainly by cytotoxic T cells and partly by antibodies. 

Then, we hypothesize that maternal immune pressure, or antibody 
against Jra antigen, can stimulate fetal clonal escape for the duration of 
maternal antibody presence, or temporal loss of heterogeneity in the Jra 

locus. 

5. Discussion 

Herein, we discussed three different mechanisms in ADFN and one 
classic pathway of HDFN, however, multiple pathways may be actually 
involved in the morbidity of some cases. Certainly, maternal anti-Kell 
alloimmunization results in clinical and laboratory evidence of the 

Fig. 3. Anti-Ge3-mediated fetal erythroid progenitor cell apoptosis. 
Maternal alloantibody against Ge3 antigen of the Gerbich blood group system expressed on glycophorin C, which is tied to the cytoskeleton and is essential in 
maintaining red cell shape and membrane functions, is supposed to suppress erythroid proliferation via non-classical apoptosis. 

Fig. 4. Anti-M-mediated erythroid suppression 
via agglutination or altered/ deformed eryth-
rocyte progenitor cells. 
IgG class maternal alloantibody against M an-
tigen expressed on glycophorin A, which con-
tributes abundant sialoglycoprotein to 
erythrocyte membrane and keeps red cells from 
adhering to each other and to vascular endo-
thelium, suppresses erythroid precursor cell 
proliferation possibly via agglutination or 
altered/deformed erythrocyte progenitor cells.   
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classical pathway of hemolysis and antibody mediated erythroid cell 
suppression. 

Further, the lowest level of IgG class anti-M as causative in very se-
vere ADFN should be elucidated, including from the standpoint of 
allotypic variations, and Fc fucosylation and galactosylation in IgG, as 
suggested by allotypic variations of the IgG Fc region manifesting 
different abilities to induce phagocytosis [37,38]. 

Considering anti-A- and anti-B-mediated HDFN, these iso-antibodies 
rarely cause severe but usually no or mild diseases, because of the fewer 
number of A and B sites with less branches qualitatively on the fetal/ 
neonatal erythrocytes with one-third of those of adult cells [39], 
possibly by epigenetic modification of nucleic acids. This change is in 
favor of having less damaged offspring which will tend to reproduce the 
peculiarities of their parents. Regarding anti-Jra-mediated ADFN, we 
speculate that intact neonates born to mothers with strong anti-Jra may 
possibly have such a suppressed Jra antigen site, which we should study 
further. 

The additional mechanisms of fetal/neonatal anemia summarize 
herein outline important observations that require further elucidation. A 
better understanding of the effects of antibody binding on erythroid cell 
development and maturation may provide useful information applicable 
to the treatment of neonatal and adult acquired anemias. 
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